best counter
Search
Report & Feedback

Chapter no 9

Calculus Made Easy

INTRODUCING A USEFUL DODGE.

‌Sometimes one is stumped by finding that the expression to be differ- entiated is too complicated to tackle directly.

Thus, the equation

2 2 3

y = (x + a ) 2

is awkward to a beginner.

Now the dodge to turn the difficulty is this: Write some symbol, such as u, for the expression x2 + a2; then the equation becomes

 

3

y = u 2 ,

 

which you can easily manage; for

dy

=

du

 

3 1

 

u 2 .
2

Then tackle the expression

 

u = x2 + a2,

 

and differentiate it with respect to x,

du

= 2x.

dx

 

Then all that remains is plain sailing;

dy dy du

for

dx = du × dx ;

dy 3 1

that is,

dx = 2 u 2 × 2x

3 2 2 1

= 2 (x + a ) 2 × 2x

2 2 1

= 3x(x + a ) 2 ;

 

and so the trick is done.

By and bye, when you have learned how to deal with sines, and cosines, and exponentials, you will find this dodge of increasing useful- ness.

 

Examples.

‌Let us practise this dodge on a few examples.

Differentiate y = √a + x. Let a + x = u.

 

du 1

dy 1 − 1 1 − 1

= 1; y = u 2 ;

dx

du = 2 u 2 = 2 (a + x) 2 .

dy dy du 1

dx = du × dx = 2√a + x.

1

Differentiate y = √a + x2 .

Let a + x2 = u.

du − 1 dy

 

1 − 3

= 2x; y = u 2 ;

dx

du = −2 u 2 .

dy dy du x

dx = du × dx = −√(a + x2)3 .

 

 

Differentiate y =

 

2

m − nx3 +

p a

4 .

x3

2

Let m − nx3 + px

4

3 = u.

du 2 − 1

 

4 − 7

dx = −3 nx 3 − 3 px 3 ;

y = ua; dy

du

= aua−1.

=

×

dy dy du

2 p

a−1 1 7

 

dx du dx

4 3 3

= −a

( 2 nx− 3 + 4 px− 3 ).

x

3

m − nx3 +

1

Differentiate y = √x3 − a2 .

Let u = x3 − a2.

du 2

— 1 dy

1 3 2 − 3

= 3x ; y = u 2 ;

dx

du = −2 (x

— a ) 2 .

dy dy du

3×2

r

‌dx = du × dx = −2√(x3 − a2)3 .

 

Differentiate y = 1 − x.

1 + x

1

1

Write this as y = (1 − x) 2 .

(1 + x) 2

 

1 1

(1 + x) 1 d(1 − x) 2 − (1 − x) 1 d(1 + x) 2

dy 2

=

dx

dx

1 + x

1

2

dx .

 

— 1

(We may also write y = (1 − x) 2 (1 + x)

product.)

2 and differentiate as a

Proceeding as in example (1) above, we get

 

1

d(1 − x) 2 =

dx

1

2√1 − x

1

d(1 + x) 2

; and =

dx

1

2√1 + x.

 

Hence

 

1

dy (1 + x) 2

 

1

(1 − x) 2

dx = −2(1 + x)√1 − x − 2(1 + x)√1 + x

√ 1 √1 − x

= −2

dy

1 + x√1 − x − 2 (1 + x)3 ;

1

or dx = −(1 + x)√1 − x2 .

r x3

Differentiate y =

We may write this

1 + x2 .

 

3 2 − 1

y = x2 (1 + x ) 2 ;

3

1

2

— 1

3

2

dx = 2 x2 (1 + x )

2 + x2 ×

.

dx

dy d (1 + x2)− 1

 

 

Differentiating (1 + x2)

1

2 , as shown in example (2) above, we get

2

d (1 + x2)− 1 x

dx = −√(1 + x2)3 ;

 

so that

dy

3√x

√x5 √x(3 + x2)

dx = 2√1 + x2 − √(1 + x2)3 = 2√(1 + x2)3 .

Differentiate y = (x + √x2 + x + a)3. Let x + √x2 + x + a = u.

 

d (x2 + x + a)

1

du 2

= 1 + .

dx dx

y = u3; and dy

du

= 3u2 = 3 x + √x2 + x + a 2 .

 

1

Now let (x2 + x + a) 2 = v and (x2 + x + a) = w.

 

dw 1

dv 1 − 1

= 2x + 1; v = w 2 ;

dx

dw = 2 w 2 .

dv dv dw 1 2 − 1

dx = dw × dx = 2 (x + x + a) 2 (2x + 1).

du 2x + 1

Hence = 1 + √ , dx 2 x2 + x + a

dy dy du

dx = du × dx

r r

= 3 x + √x2 + x + a 2 1 +

2x + 1

2√x2 + x + a .

Differentiate y = We get

a2 + x2 3

a2 − x2

a2 x2 a2 + x2 .

2 2 1 2 2 1

1

1

) 6 (

x )

6 .

y = (a + x ) 2 (a − x ) 3 = (a2 + x2 1 a2 − 2 − 1

(a2 x2) 2 (a2 + x2) 3

2

2

1

6

dy d (a2 − x2)− 1

d (a2 + x2) 1

= (a

dx

+ x ) 6 +

dx

.

6

6

(a2 − x2) 1 dx

2

2

1

Let u = (a2 − x ) 6 and v = (a2 − x ).

— 1 du 1 − 7 dv

u = v 6 ; = −

v 6 ; = −2x.
dv 6 dx

du du dv 1 2

2 − 7

dx = dv × dx = 3 x(a − x ) 6 .

2 2 1 2 2

Let w = (a + x ) 6 and z = (a + x ).

1

w = z 6 ;

dw 1 5

=

z 6 ;
dz 6

dz

= 2x.

dx

dw dw dz 1 2

2 − 5

dx = dz × dx = 3 x(a

+ x ) 6 .

 

Hence

dy

 

2 2 1 x x

= (a + x ) 6 7 +

1 5 ;

dx 3(a2 − x2) 6 3(a2 − x2) 6 (a2 + x2) 6

dy x “s6 a2 + x2 1 #

or =

dx 3

(a2 − x2)7 + √6

.

(a2 − x2)(a2 + x2)5]

(9) Differentiate yn with respect to y5.

 

d(yn)

d(y5) =

nyn−1

5y5−1 =

nyn−5.

5

b

d (a − x)x }

‌(10) Find the first and second differential coefficients of y = x√(a − x)x.

 

dy x

=

dx b

1

2

+ (a − x)x.

dx b

2

Let (a − x)x 1 = u and let (a − x)x = w; then u = w 21 .

du 1 − 1 1 1

=

=

w
dw 2

dw

 

2

1

2w 2

= 2√(a − x)x.

dx = a − 2x.

du dw du a − 2x

dw × dx = dx = 2√(a − x)x.

 

Hence

dy x(a − 2x) √(a − x)x x(3a − 4x)

dx = 2b√(a − x)x + b = 2b√(a − x)x.

 

Now

 

d2y

 

2b√(a − x)x (3a − 8x) −

 

(3ax − 4×2)b(a − 2x)

(a − x)x

dx2 =

 

4b2(a − x)x

3a2 − 12ax + 8×2

= 4b(a − x) (a − x)x.

(We shall need these two last differential coefficients later on. See Ex. x. No. 11.)

 

‌Exercises VI. (See page 255 for Answers.) Differentiate the following:‌

(1) y = √x2 + 1. (2) y = √x2 + a2.

1 a

(3) y = √a + x. (4) y = √a − x2 .

 

(5) y =

√x2 a2

x2 . (6) y =

a2 + x2

√3 x4 + a

√2 x3 + a .

y = (a + x)2 .

Differentiate y5 with respect to y2.

√1 − θ2

Differentiate y =

.

1 − θ

 

The process can be extended to three or more differential coeffi-

dy dy dz dv

cients, so that = × × .

dx dz dv dx

 

Examples.

If z = 3×4; v = 7 ; y = √1 + v, find dv .

We have

dy

z2

 

1 dv

dx

14 dz 3

dv = 2√1 + v ;

dz = − z3 ;

= 12x .

dx

dy 168×3 28

dx = −(2√1 + v)z3 = −3×5√9×8 + 7 .

If t =

1

5√θ

; x = t3 +

t

 

; v = 2
7×2 dv

√3

, find .

x − 1 dθ

dv 7x(5x − 6) dx

2 1 dt 1

dx = 3√3

;

2

dv

(x − 1)4

= 3t

7x(5x − 6)(3t2 + 1 )

dt

+ 2 ;

dθ = −10√θ3 .

Hence

dθ = −

30√3

(x − 1)4√θ3 ,

an expression in which x must be replaced by its value, and t by its

value in terms of θ.

3a2x

√1 − θ2

1 dϕ
If θ =

We get

√x3 ; ω =

; and ϕ =

1 + θ

3 − ω√2 , find dx .

θ = 3a2x

1

2 ; ω =

1 − θ ; and ϕ = 1 + θ

1

3 − √2

ω−1.

r

dθ 3a2 dω 1

dx = −2√x3 ;

(see example 5, p. 68); and

dθ = −(1 + θ)√1 − θ2

dϕ 1

dθ 1

dω = √2ω2 .

1

3a2

So that = √ × √ × √ .

dx 2 × ω2 (1 + θ) 1 − θ2 2 x3

Replace now first ω, then θ by its value.

 

 

‌Exercises VII. You can now successfully try the following. (See page 256 for Answers.)‌

If u = 1 x3; v = 3(u + u2); and w = 1 , find dw .

2 v2 dx

If y = 3×2 + √2; z = √1 + y; and v = √

1

3 + 4z

dv

, find .

dx

x3

If y = √3

1 du

2 √

; z = (1 + y) ; and u = , find .

1 + z dx

 

You'll Also Like